Search: Look for:   Last 1 Month   Last 6 Months   All time

Gene that stunts infants' growth also makes them grow too big

London, Mon, 28 May 2012 ANI

London, May 28 (ANI): The mutation responsible for IMAGe syndrome - a rare disorder that stunts infants' growth - has been identified, and surprisingly it occurs on the same gene that causes Beckwith-Wiedemann syndrome, which makes cells grow too fast, leading to very large children.

The findings by UCLA geneticists could lead to new ways of blocking the rapid cell division that allows tumours to grow unchecked. The discovery also offers a new tool for diagnosing children with IMAGe syndrome, which until now has been difficult to accurately identify.

The discovery holds special significance for principal investigator Dr. Eric Vilain, a professor of human genetics, pediatrics and urology at the David Geffen School of Medicine at UCLA.

Nearly 20 years ago, as a medical resident in his native France, Vilain cared for two boys, ages 3 and 6, who were dramatically short for their ages. Though unrelated, both children shared a mysterious malady marked by minimal fetal development, stunted bone growth, sluggish adrenal glands, and undersized organs and genitals.

When Vilain joined UCLA as a genetics fellow, the two cases continued to intrigue him. His mentor, then UCLA geneticist Dr. Edward McCabe, recalled a similar case from his previous post at Baylor College of Medicine. The two of them obtained blood samples from the three cases and analyzed the patients' DNA for mutations in suspect genes, but uncovered nothing.

Vilain and McCabe approached the Journal of Clinical Endocrinology and Metabolism, and in 1999 published the first description of the syndrome, which they dubbed IMAGe, an acronym of sorts for the condition's symptoms: intrauterine growth restriction, metaphyseal dysplasia, adrenal hypoplasia and genital anomalies.

Over the next decade, about 20 cases were reported around the world. But the cause of IMAGe syndrome remained a mystery.

Help arrived unexpectedly last year when Vilain received an email from Argentinian physician Dr. Ignacio Bergada, who had unearthed the 1999 journal article. He told Vilain about a large family he was treating in which eight members suffered the same symptoms described in the study. All of the family members agreed to send their DNA samples to UCLA for study.

Vilain then assembled a team of UCLA researchers to partner with Bergada and London endocrinologist Dr. John Achermann.

Vilain's team performed a linkage study, which identifies disease-related genetic markers passed down from one generation to another. The results steered Vilain to a huge swath of Chromosome 11.

The UCLA Center for Clinical Genomics performed next-generation sequencing, a powerful new technique that enabled the scientists to scour the enormous area in just two weeks and tease out a slender stretch that held the culprit mutation. The team also uncovered the same mutation in the original three cases described by Vilain in 1999.

"We discovered a mutation in a tiny sliver of the chromosome that appeared in every family member affected by IMAGe syndrome," said Vilain.

"This was a big step forward. Now we can use gene sequencing as a tool to screen for the disease and diagnose children early enough for them to benefit from medical intervention.

"We were a little surprised, because the mutation was located on a famous gene recognized for causing Beckwith-Wiedemann syndrome. The two diseases are polar opposites of each other," he added.

Children born with Beckwith-Wiedemann syndrome - named for the two doctors who discovered it - grow very large with big adrenal glands, elongated bones and oversized internal organs. Because their cells grow so fast, children with the disorder typically die of cancer at a young age. The disease affects one in 15,000 births.

"Finding opposite functions in the same gene is a rare biological phenomenon. When the mutation appeared in the slim section we identified, the infant developed IMAGe syndrome. If the mutation fell anywhere else in the gene, the child was born with Beckwith-Wiedemann. That's really quite remarkable," explained Vilain.

IMAGe syndrome patients also tend to die young due to poor adrenal activity, which physicians treat with hormone-replacement therapy.

The findings proved that Vilain and his colleagues had identified the correct mutation, bringing his 20-year odyssey to a successful end.

The finding has been published in Nature Genetics. (ANI)


LATEST IMAGES
President of India presenting the Shaurya Chakra to Lieutenant Colonel Niranjan Ek
PM distributing the smart mobile phones to women entrepreneurs of Sakhi Mandal
PM distributing the Certificate of Appointment to constables of Paharia Special India Reserve Batallion
PM Modi at the function to inaugurate the various projects in Sahibganj
PM Narendra Modi being received by the Governor of Jharkhand
Post comments:
Your Name (*) :
Your Email :
Your Phone :
Your Comment (*):
  Reload Image
 
 

Comments:


 

OTHER TOP STORIES


Excellent Hair Fall Treatment
Careers | Privacy Policy | Feedback | About Us | Contact Us | | Latest News
Copyright © 2015 NEWS TRACK India All rights reserved.